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Abstract
Considering the success of Bond Graph technology

in engineering sciences since its invention by Paynter in
1959, it is increasingly interesting to investigate its
application to other fields. This paper attempts to relate
Bond Graph technology to Social and Life Sciences,
utilizing the Bond Graph structure as a basis for
searching for equivalencies to the Energy concept
inherent in Bond Graphs. The mathematical theory,
which describes the behavior of entities in the social and
biological fields, is presented in the context of it’s
relation to Bond Graphs. Considering that many
phenomena in these fields are also represented by
mathematical models that deal with partial differential
equations, this research attempts to relate this modeling
process to the application of the Bond Graph method.

1. INTRODUCTION
Since the end of the Second World War and

specially since the introduction of computers, a lot of
scientific effort has been put into the modelling and
simulation of Dynamic Systems in the fields of Social
Science (FORRESTER 61, FORRESTER 68, FORRESTER 71,
FITZROY 76, COYLE 77, LILIEN 83, LILIEN 92) and Life
Sciences (GOLD 77, JOLIVET 82, LEBRETON 82,
BERTRANDIAS 90, CHERRUAULT 98).

Simultaneously, much work has been done in the
Statistics field of Multivariate Data Analysis to
construct efficient mathematical tools for understanding
the behavior of social and biological entities
(MORRISON 67, JOHNSON 82, KRZANOWSKI 88, LEBRAT
97).

Finally, powerful methods have been developed to
model reality with Partial Differential Equations
(FARLOW 82, BELTRAMI 87, FOWLER 97, BASSANINI 97)
and to compute their solutions (MOHR 92, CURNIER 93,
ZIENKIEWICZ 94, BELYTSCHKO 00).

The challenge is to integrate all the methods developed
so far with the tools that have been developed in
Automatic Control Theory as used in Engineering
(FRANKLIN 94, DORF 95, LONGCHAMP 95). To do so,
the equations used to describe the behavior of the
systems must be related to an analytical or logical
structure which should allow the use of concepts such as
energy, stability, observability, controllability,
frequency response and so on, to explain the system
behavior.

Can Bond Graph representations be used systematically
to understand the behavior of social and biological
systems? If so, what are the underlying fundamental
mathematical considerations and their relations to Bond
Graphs? These questions are explored below.

2. MATHEMATICAL FUNDAMENTALS
Bond Graphs allow one to represent in a single

language many scientific domains connected together
(KARNOPP 00). When we consider what Paynter
(PAYNTER 60, p. 32) did to establish the basis of Bond
Graphs, we realize that he started with the Fundamental
equation of energy continuity:

- div p = 
∂ε
∂t

 + pd
     (1)

where p is the power flow, ε is the energy density and
pd is the energy dissipation.

This fundamental equation is grounded in the field of
Differential Geometry (ABRAHAM 83, DODSON 91,
FRANKEL 97, HUBBARD 99) and is used to describe the
dynamics of a Continuous Medium in a space, whether
physical or abstract.

This research explores basic principles which apply to
continuous entities as stated in the continuous media
theory by many authors (TRUESDELL 65, OTTINO 89,
COIRIER 97, HJELMSTAD 97, FREY 98, MASE 99,
WIELGOSZ 99) and shows their application to other
fields as well as their relation to Bond Graphs.



Let us consider a control volume B with boundary R in
a multidimensional-space x as shown in Fig. 1:
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Fig. 1 Control volume B with boundary R

The external generalized forces yB (forces and torques)
acting inside the entire volume of the considered reality
and the boundary forces yR acting on the boundary of
that volume produce a displacement z (translations and
rotations) of that reality considered as a continuous
medium.

In order to understand this behavior in different fields, it
is necessary to examine the changes occurring in lines,
surfaces and volumes of reference chosen in the control
volume. One measure universally accepted for estimating
the dynamical change of a multidimensional continuum
is the deformation tensor e.

For a deformation map Ψ  of the continuum, this tensor

is equal to half the square of the gradient Ψ  of the

deformation map minus the unit tensor I :

e = 1
2

 Ψ
T
Ψ  - I

     (2)

The internal cohesion forces are described by the stress
tensor y .

The internal energy E of the system (neglecting inertial
effects) is a scalar resulting from the tensorial double
contraction of the deformation tensor by the stress
tensor:

E = y : e      (3)

The time rate of change of the internal energy is
measured by the tensorial double contraction of the

stress tensor by the rate of deformation tensor e:

E = y : e      (4)

Considering that a part of the deformation is irreversible
because of energy dissipation, we decompose the
deformation into a reversible part eI  (I standing for

Inductance i.e. energy storage) and an irreversible part eR
(R standing for Resistance i.e. energy dissipation):

E = y : eI + y : eR      (5)

3. RELATION TO BOND GRAPH THEORY
It is possible to point out the relation of such a

representation of the behavior of a reality to the Bond
Graph theory.

3.1 Relation to Bond Graph elements
Considering the energy relations (3), (4) and (5)

above, one can find a relationship with the constitutive
laws of Bond Graph equations. The reason for this is
that, according to the Mobility Analogy (DEL PEDRO

83), eI  is equivalent to a generalized displacement q, eR
to a generalized flow f, y  to a generalized effort e and

the double contraction y : eR  represents the equivalent
to power. This relation allows Tensor Bond Graphs to
be used to represent the classical Hook elastic media of
Continuum Mechanics:

y = I : e      (6)

where I is an elasticity fourth order tensor,

and also the Newton viscous media:

y = R : e     (7)

where R is a viscosity tensor.

3.2 Relation to Bond Graph junctions
The Tensor Bond Graph representation used above

can be related to the 0 and 1 junctions of Bond Graphs.

In the case of the 1 junction, the global effort is equal to
the sum of the efforts of the two basic elements.

The effort on the reversible element I is:

y1 = I : e     (8)

The effort on the irreversible element R is:

y2 = R : e      (9)
The total effort is:

y = y1 + y2      (10)



The differential equation of such a continuous medium
is:

y = I : e + R : e      (11)

This equation is that of the Kelvin medium of
Continuum Mechanics. For such a medium, a sudden
application of a stress produces no immediate
deformation because the irreversible part of the medium
does not react instantaneously. Instead a deformation
will gradually build up as the reversible part takes a
greater and greater share of the stress. When the stress is
removed, the deformation disappears gradually.

In the case of 0 junctions, the global displacement is
equal to the sum of the displacements of the two
connected elements:

e = e1 + e2     (12)

The displacement on the reversible element is:

y = I : e1      (13)

and the flow on the second element is:

y = R : e2      (14)

which gives as differential equation for the 0
combination of the two elements:

R

I
 : y + y = R : e

     (15)
or

e = 1

R
 : y + 1

I
 : y

     (16)

This equation represents the classical Maxwell medium
of Continuum Mechanics. A sudden application of stress
on such a medium induces an immediate deflection by
the reversible part followed by a creep due to the
irreversible part. On the other hand, a sudden
deformation produces an immediate stress due to the
reversible part, followed by a stress relaxation due to the
irreversible part.

4. TENSOR BOND GRAPHS
The Bond Graphs effort and flow vectors may

represent the reality considered. For example, the
deformation of a medium in a three-dimensional space
xi, i = 1..3 can be represented by a row vector of six
deformation components, three translations and three
rotations defined as follows:

eT = εx1x1, εx2x2, εx3x3, γx1x2, γx2x3, γx3x1

where the εx ix i  are the translations and the γx ix j  are the
rotations. This is like a vector of displacement {q}
(translations and rotations) in the Bond Graph sense
defined as:

qT = qx1x1, qx2x2, qx3x3, qx1x2, qx2x3, qx3x1

We can start with the Kelvin medium and put its
deformation in vectorial form resulting in the matrix
differential equation:

y = I e + R e      (17)

which corresponds to the following Bond Graph
notation:

e  = I  q  + R  f      (18)

where [I] is a stiffness matrix, [R] is a damping matrix,
{e} is the effort, {q} the displacement and {f} the flow.
This is the equation of a Tensor Bond Graph for a three-
dimensional space with vectors of efforts and flows
arranged in a summation of efforts corresponding to a 1
junction as shown in Fig. 2:

{e}
 . . 
S E

[ I ] : I 1 R : [ R ]

Fig. 2 Continuous media Tensor Bond Graph

When we consider non-physical systems, the Tensor
Bond Graph is composed of Pseudo Bonds because of
the units involved. Tensor Pseudo Bond Graphs are used
when the analysis extends to social and biological
systems.

The three-dimensional space Tensor Bond Graph above
is composed of a multiport I field and a multiport R
field, which contain the coefficient matrices. The
matrices representing the behavior of the system are
obtained utilizing the ability of the Camp-G software
(GRANDA 95) to process multiport fields. Such a Bond
Graph entered in Camp-G is shown in Fig. 3 hereunder:



Fig. 3 Continuous media three-dimensional space model

The I  matrix containing the stiffness coefficients of
such a system is shown in Fig. 4:

Fig. 4 [I] Multiport coefficient matrix

This 6x6 matrix I is typical of an anisotropic medium
whose properties are varying in space. Among the 36
coefficients of this matrix, only 21 are independent
because of the symmetry of the angular deformations. In
this general case, 21 independent measurements are
mandatory in order to identify the 21 coefficients. In
case there are symmetries in the behavior of the medium,
the number of independent coefficients goes down to 9
for orthotropic media and down to 2 for isotropic media
which are symmetric with respect to every plane and
every axis.

The R  matrice is shown in Fig. 5:

Fig. 5 R  Multiport coefficient matrix

In the case of the Maxwell model, we can also use the
matrix differential equation:

R
I

 y + y = R e
     (19)

giving in turn the following Bond Graph equation:

R
I

  e  + e  = R   f
     (20)

Multiplying both sides by the inverse of R  we get:

1
I

 e  + 
e
R

 = f
     (21)

which is obviously the sum of two flows equal to f .
Such representation in Bond Graph form is only
possible by summing the flows using a 0 junction.
Therefore, the three-dimensional space Tensor Bond
Graph takes the form shown in fig. 6 below:

{e}
 . . 
S E

[ I ] : I 0 R : [ R ]

Fig. 6 Bond Graph model of a Maxwell viscoelastic
medium

5. TYPICAL BEHAVIOURS
We have seen that the Bond Graph parameter

matrices represent the behavior of the medium



considered. A number of viscoelastic media models can
be constructed easily with the basic Tensor Bond Graphs
presented above (CHUNG 96). The possibility of
introducing non-linear behaviors with Bond Graphs
(GRANDA 99) allows all the spectra of rheological
viscoelastoplatic media models to be represented
(COUARRAZE 00), including hysteresis due to sensibility
of the medium to the application of various stress
frequencies (VERHAS 97).

6. EXAMPLE IN ECONOMICS
We are now in a position to follow up work done in

Bond Graph representation of social systems (BREWER
76, BREWER 77, BREWER 82) as well as biological
systems (BREWER 80, SCHNAKENBERG 81, BREWER 91).
This can be done according to the general manner of
classifying the dynamical variables into efforts and
flows, as defined in the general scientific field (JONES
71, PETERSON 79, HEZEMANS 86).

Let us take a very simple example in the field of
economics. Consider a banker who wants to understand
the dynamics of a financial market. For that purpose, he
uses two discriminant criteria (stocks and bonds, for
instance) in order to modelize the flow of investors
moving on that market.

We see immediately that the banker is facing a two-
dimensional space problem. Using the Computer Aided
Modeling Program Camp-G gives the Tensor Pseudo
Bond Graph shown in fig. 7, with a three-components
displacement vector (two translations and one rotation)
and a three-components effort vector representing the
market motivations driving investors and are like the
effort variable of the Bond Graphs.

Fig. 7 Financial Tensor
Pseudo Bond Graph in Camp-G

The elasticity matrix of the market produced with Camp-
G is shown in Fig. 8:

Fig. 8 Elasticity matrix of the market

This matrix shows the equation of the multiport element
on the left. It allows the banker to realize that in order to
understand the dynamics of the market considered, he
needs to identify these coefficients in the DataBase
containing the information about the market.

The fluidity matrix of the market, which can be
compared to the multiple R matrix of Bond Graphs,
allows the banker to understand some irreversible
behaviors of the investors and is shown in Fig. 9:

Fig. 9 Fluidity matrix of the market

It is interesting to note that the knowledge the banker
gets at this point allows him to perform a Dimensional
Analysis of the variables and parameters of the model,
ensuring that his representation of the reality is coherent
(SZIRTES 98).

Furthermore, the Camp-G program, thanks to its
interfaces to Matlab and Simulink, produces a
computable model of the market. The variables,
parameters and differential equations constituting this
model are shown in Fig.10 below:



Fig. 10 The Matlab file containing the computable
model of the market

The use of the Matlab files provided by Camp-G allows
the banker to generate automatically the State Space
Form of the market model. This State Space Form is
shown in Fig. 11:

Fig. 11 The State Space Form of the market model

With this State Space Form, many tools developed for
Automatic Control in the Engineering field, like Matlab
toolboxes, Simulink or Sysquake, become available for
analysis of financial markets.

Our objective, which was to obtain a representation
allowing the use of automatic control tools in the field
of Social and Life Sciences, is fulfilled.

7. CONCLUSION
In Social and Life Science fields, the scientific

understanding of a situation necessitates a combination
of scalar, vectorial and tensorial variables and parameters
into a coherent calculus scheme. Since we have
established a relationship of such a scheme with Bond
Graphs, then the constitutive laws of Bond Graph
theories allow the calculation of the state and anticipated
evolution in time of systems considered in the fields of
social and life sciences.
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